Solution Bank

Chapter review 6

1
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 2 \\ t & 3 & 1 \\ -2 & -1 & 1 \end{pmatrix}$$

$$\det(\mathbf{A}) = 1 \begin{vmatrix} 3 & 1 \\ -1 & 1 \end{vmatrix} - 0 \begin{vmatrix} t & 1 \\ -2 & 1 \end{vmatrix} + 2 \begin{vmatrix} t & 3 \\ -2 & -1 \end{vmatrix}$$

$$= 1(3+1) - 0 + 2(-t+6)$$

$$= 4 - 2t + 12$$

$$= 16 - 2t$$

Since **A** is singular, $det(\mathbf{A}) = 0$, therefore:

$$16 - 2t = 0 \Rightarrow t = 8$$

Solution Bank

$$\mathbf{2} \quad \mathbf{M} = \begin{pmatrix} 1 & 0 & 0 \\ x & 2 & 0 \\ 3 & 1 & 1 \end{pmatrix}$$

Step 1
$$\det(\mathbf{M}) = 1 \begin{vmatrix} 2 & 0 \\ 1 & 1 \end{vmatrix} - 0 \begin{vmatrix} x & 0 \\ 3 & 1 \end{vmatrix} + 0 \begin{vmatrix} x & 2 \\ 3 & 1 \end{vmatrix}$$

$$= 1(2-0)$$

$$= 2$$

$$\mathbf{N} = \begin{pmatrix} \begin{vmatrix} 2 & 0 \\ 1 & 1 \end{vmatrix} & \begin{vmatrix} x & 0 \\ 3 & 1 \end{vmatrix} & \begin{vmatrix} x & 2 \\ 3 & 1 \end{vmatrix} \\ \begin{vmatrix} 0 & 0 \\ 1 & 1 \end{vmatrix} & \begin{vmatrix} 1 & 0 \\ 3 & 1 \end{vmatrix} & \begin{vmatrix} 1 & 0 \\ 3 & 1 \end{vmatrix} \\ \begin{vmatrix} 0 & 0 \\ 2 & 0 \end{vmatrix} & \begin{vmatrix} 1 & 0 \\ x & 0 \end{vmatrix} & \begin{vmatrix} 1 & 0 \\ x & 2 \end{vmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} 2 - 0 & x - 0 & x - 6 \\ 0 - 0 & 1 - 0 & 1 - 0 \\ 0 - 0 & 0 - 0 & 2 - 0 \end{pmatrix}$$

$$= \begin{pmatrix} 2-0 & x-0 & x-6 \\ 0-0 & 1-0 & 1-0 \\ 0-0 & 0-0 & 2-0 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & x & x-6 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

$$\mathbf{C} = \begin{pmatrix} 2 & -x & x - 6 \\ 0 & 1 & -1 \\ 0 & 0 & 2 \end{pmatrix}$$

$$\mathbf{C}^{\mathrm{T}} = \begin{pmatrix} 2 & 0 & 0 \\ -x & 1 & 0 \\ x - 6 & -1 & 2 \end{pmatrix}$$

$$\mathbf{M}^{-1} = \frac{1}{\det(\mathbf{M})} \mathbf{C}^{\mathrm{T}}$$
$$= \frac{1}{2} \begin{pmatrix} 2 & 0 & 0 \\ -x & 1 & 0 \\ x - 6 & -1 & 2 \end{pmatrix}$$

Solution Bank

3 a M =
$$\begin{pmatrix} 1 & 8 \\ 8 & -11 \end{pmatrix}$$
, $\lambda_1 = 5$ and $\lambda_2 = -15$

To find an eigenvector corresponding to $\lambda_1 = 5$

$$\begin{pmatrix} 1 & 8 \\ 8 & -11 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 5 \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} x + 8y \\ 8x - 11y \end{pmatrix} = \begin{pmatrix} 5x \\ 5y \end{pmatrix}$$

Equating the upper elements gives:

$$x + 8y = 5x \Rightarrow x = 2y$$

Setting y = 1 gives x = 2

Hence, an eigenvector corresponding to $\lambda_1 = 5$ is $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$

To find an eigenvector corresponding to $\lambda_2 = -15$

$$\begin{pmatrix} 1 & 8 \\ 8 & -11 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = -15 \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} x + 8y \\ 8x - 11y \end{pmatrix} = \begin{pmatrix} -15x \\ -15y \end{pmatrix}$$

Equating the upper elements gives:

$$x + 8y = -15x \Rightarrow 2x = -y$$

Setting x = 1 gives y = -2

Hence, an eigenvector corresponding to $\lambda_2 = -15$ is $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$

b
$$\begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
 has magnitude $\sqrt{2^2 + 1^2} = \sqrt{5}$

Hence, a normalised eigenvector corresponding to $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ is $\begin{pmatrix} \frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{pmatrix}$

$$\begin{pmatrix} 1 \\ -2 \end{pmatrix}$$
 has magnitude $\sqrt{1^2 + (-2)^2} = \sqrt{5}$

Hence, a normalised eigenvector corresponding to $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$ is $\begin{pmatrix} \frac{1}{\sqrt{5}} \\ -\frac{2}{\sqrt{5}} \end{pmatrix}$

$$\mathbf{P} = \begin{pmatrix} \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & -\frac{2}{\sqrt{5}} \end{pmatrix}$$

Solution Bank

4 a
$$\mathbf{A} = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 2 & -1 \\ -4 & 2 \end{pmatrix}$

$$\mathbf{AB} = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -4 & 2 \end{pmatrix}$$

$$= \begin{pmatrix} 10 - 8 & -5 + 4 \\ 4 - 4 & -2 + 2 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & -1 \\ 0 & 0 \end{pmatrix}$$

$$\mathbf{b} \quad \mathbf{A}^{\mathrm{T}} = \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix} \text{ and } \quad \mathbf{B}^{\mathrm{T}} = \begin{pmatrix} 2 & -4 \\ -1 & 2 \end{pmatrix}$$

$$\mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} = \begin{pmatrix} 2 & -4 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 5 & 2 \\ 2 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 10 - 8 & 4 - 4 \\ -5 + 4 & -2 + 2 \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 0 \\ -1 & 0 \end{pmatrix}$$

$$\mathbf{A} \mathbf{B} = \begin{pmatrix} 2 & -1 \\ 0 & 0 \end{pmatrix}$$

Therefore:

$$\begin{pmatrix} \mathbf{A}\mathbf{B} \end{pmatrix}^{\mathrm{T}} = \begin{pmatrix} 2 & 0 \\ -1 & 0 \end{pmatrix}$$

Hence $(\mathbf{A}\mathbf{B})^{\mathsf{T}} = \mathbf{B}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}$ as required

5 a
$$\mathbf{A} = \begin{pmatrix} -5 & 8 \\ 3 & -7 \end{pmatrix}$$

$$\mathbf{A} - \lambda \mathbf{I} = \begin{pmatrix} -5 - \lambda & 8 \\ 3 & -7 - \lambda \end{pmatrix}$$

$$\det(\mathbf{A} - \lambda \mathbf{I}) = (-5 - \lambda)(-7 - \lambda) - 24$$

$$= (5 + \lambda)(7 + \lambda) - 24$$

$$= 35 + 12\lambda + \lambda^2 - 24$$

$$= \lambda^2 + 12\lambda + 11$$

$$= (\lambda + 1)(\lambda + 11)$$

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

$$(\lambda + 1)(\lambda + 11) = 0$$

$$\lambda = -1 \text{ or } \lambda = -11$$

Solution Bank

5 b When
$$\lambda = -1$$

$$\begin{pmatrix} -5 & 8 \\ 3 & -7 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = -1 \begin{pmatrix} x \\ y \end{pmatrix}$$
$$\begin{pmatrix} -5x + 8y \\ 3x - 7y \end{pmatrix} = \begin{pmatrix} -x \\ -y \end{pmatrix}$$

Equating the upper elements gives:

$$-5x + 8y = -x \Rightarrow y = \frac{1}{2}x$$

When
$$\lambda = -11$$

$$\begin{pmatrix} -5 & 8 \\ 3 & -7 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = -11 \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} -5x + 8y \\ 3x - 7y \end{pmatrix} = \begin{pmatrix} -11x \\ -11y \end{pmatrix}$$

Equating the upper elements gives:

$$-5x + 8y = -11x \Rightarrow y = -\frac{3}{4}x$$

6 a
$$\mathbf{A} = \begin{pmatrix} 3 & 1 & 0 \\ 2 & 4 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
 and 1 is an eigenvalue of \mathbf{A}

$$\begin{pmatrix} 3 & 1 & 0 \\ 2 & 4 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 1 \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\begin{pmatrix} 3x + y \\ 2x + 4y \\ x + z \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

Equating the lower elements gives:

$$x + z = z \Longrightarrow x = 0$$

Equating the middle elements and setting x = 0 gives:

$$0 + 4y = y \Rightarrow y = 0$$

Equating the lower elements again and setting x = 0 gives:

$$z = z$$

Hence,
$$z = 1$$

Solution Bank

6 b
$$\mathbf{A} = \begin{pmatrix} 3 & 1 & 0 \\ 2 & 4 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

$$\mathbf{A} - \lambda \mathbf{I} = \begin{pmatrix} 3 - \lambda & 1 & 0 \\ 2 & 4 - \lambda & 0 \\ 1 & 0 & 1 - \lambda \end{pmatrix}$$

$$\det(\mathbf{A} - \lambda \mathbf{I}) = (3 - \lambda) \left[(4 - \lambda)(1 - \lambda) - 0 \right] - 1 \left[2(1 - \lambda) - 0 \right] + 0 \left[0 - (4 - \lambda) \right]$$

$$= (1 - \lambda)(3 - \lambda)(4 - \lambda) - 2(1 - \lambda)$$

$$= (1 - \lambda) \left[(3 - \lambda)(4 - \lambda) - 2 \right]$$

$$= (1 - \lambda) \left[(3 - \lambda)(4 - \lambda) - 2 \right]$$

$$= (1 - \lambda)(12 - 7\lambda + \lambda^2 - 2)$$

$$= (1 - \lambda)(\lambda^2 - 7\lambda + 10)$$

$$= (1 - \lambda)(\lambda - 2)(\lambda - 5)$$

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

$$(1 - \lambda)(\lambda - 2)(\lambda - 5) = 0$$

$$\lambda = 1 \text{ or } \lambda = 2 \text{ or } \lambda = 5$$

Hence, the remaining eigenvalues are 2 and 5

Solution Bank

7
$$\mathbf{T} = \begin{pmatrix} 4 & 3 & 0 \\ 0 & -2 & 1 \\ 3 & 1 & -2 \end{pmatrix}$$

$$l_{1} : \mathbf{r} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} + t \begin{pmatrix} 2 \\ -3 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 4 & 3 & 0 \\ 0 & -2 & 1 \\ 3 & 1 & -2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 4+0+0 \\ 0+0+2 \\ 3+0-4 \end{pmatrix}$$

$$= \begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} 4 & 3 & 0 \\ 0 & -2 & 1 \\ 3 & 1 & -2 \end{pmatrix} \begin{pmatrix} 2 \\ -3 \\ 0 \end{pmatrix} = \begin{pmatrix} 8-9+0 \\ 0+6+0 \\ 6-3+0 \end{pmatrix}$$

$$= \begin{pmatrix} -1 \\ 6 \\ 3 \end{pmatrix}$$

$$l_{2} : \mathbf{r} = \begin{pmatrix} 4 \\ 2 \\ -1 \end{pmatrix} + t \begin{pmatrix} -1 \\ 6 \\ 3 \end{pmatrix}$$

In Cartesian form this is the equation:

$$\frac{x-4}{-1} = \frac{y-2}{6} = \frac{z+1}{3}$$

Solution Bank

$$\mathbf{8} \quad \mathbf{a} \quad \mathbf{A} = \begin{pmatrix} 3 & 4 & -4 \\ 4 & 5 & 0 \\ -4 & 0 & 1 \end{pmatrix}$$

$$\mathbf{A} - \lambda \mathbf{I} = \begin{pmatrix} 3 - \lambda & 4 & -4 \\ 4 & 5 - \lambda & 0 \\ -4 & 0 & 1 - \lambda \end{pmatrix}$$

$$\det(\mathbf{A} - \lambda \mathbf{I}) = (3 - \lambda) [(5 - \lambda)(1 - \lambda) - 0] - 4[4(1 - \lambda) - 0] - 4[0 + 4(5 - \lambda)]$$

$$= (1 - \lambda)(3 - \lambda)(5 - \lambda) - 16(1 - \lambda) - 16(5 - \lambda)$$

$$= (1 - \lambda)(3 - \lambda)(5 - \lambda) - 16 + 16\lambda - 80 + 16\lambda$$

$$= (1 - \lambda)(3 - \lambda)(5 - \lambda) - 96 + 32\lambda$$

$$= (1 - \lambda)(3 - \lambda)(5 - \lambda) - 32(3 - \lambda)$$

$$= (3 - \lambda)[(1 - \lambda)(5 - \lambda) - 32]$$

$$= (3 - \lambda)(5 - 6\lambda + \lambda^2 - 32)$$

$$= (3 - \lambda)(\lambda^2 - 6\lambda - 27)$$

$$= (3 - \lambda)(\lambda - 9)(\lambda + 3)$$

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

$$(3-\lambda)(\lambda-9)(\lambda+3)=0$$

$$\lambda = -3$$
 or $\lambda = 3$ or $\lambda = 9$

Hence, 3 is an eigenvalue (as required) and the remaining eigenvalues are -3 and 9

b To find an eigenvector corresponding to the eigenvalue 3:

$$\begin{pmatrix} 3 & 4 & -4 \\ 4 & 5 & 0 \\ -4 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 3 \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\begin{pmatrix} 3x + 4y - 4z \\ 4x + 5y \\ -4x + z \end{pmatrix} = \begin{pmatrix} 3x \\ 3y \\ 3z \end{pmatrix}$$

Equating the elements of the middle row gives:

$$4x + 5y = 3y \Rightarrow 2x = -y$$

Setting
$$x = 1$$
 gives $y = -2$

Equating the elements of the bottom row gives:

$$-4x + z = 3z \Rightarrow 2x = -z$$

Hence
$$z = -2$$

Therefore, an eigenvector corresponding to the eigenvalue 3 is $\begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix}$

Solution Bank

8 c The remaining two eigenvectors are $\begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$

$$\begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix} \text{ has magnitude } \sqrt{1^2 + (-2)^2 + (-2)^2} = 3$$

Hence a normalised eigenvector corresponding to $\begin{pmatrix} 1 \\ -2 \\ -2 \end{pmatrix}$ is $\begin{pmatrix} \frac{1}{3} \\ -\frac{2}{3} \\ -\frac{2}{3} \\ -\frac{2}{3} \end{pmatrix}$

$$\begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$$
 has magnitude $\sqrt{2^2 + 2^2 + (-1)^2} = 3$

Hence a normalised eigenvector corresponding to $\begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$ is $\begin{pmatrix} \frac{2}{3} \\ \frac{2}{3} \\ -\frac{1}{3} \end{pmatrix}$

$$\begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$$
 has magnitude $\sqrt{2^2 + (-1)^2 + 2^2} = 3$

Hence a normalised eigenvector corresponding to $\begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$ is $\begin{pmatrix} \frac{2}{3} \\ -\frac{1}{3} \\ \frac{2}{3} \end{pmatrix}$

Therefore

$$\mathbf{P} = \begin{pmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ -\frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \\ -\frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \end{pmatrix}$$

Note that \mathbf{P} could also be formed with any reordering of the columns, and with any column(s) multiplied by -1

Solution Bank

9 a
$$A = \begin{pmatrix} 2 & -2 & 0 \\ -2 & 1 & 2 \\ 0 & 2 & 5 \end{pmatrix}$$

$$\begin{pmatrix} 2 & -2 & 0 \\ -2 & 1 & 2 \\ 0 & 2 & 5 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} = k \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} 4 - 6 + 0 \\ -4 + 3 - 2 \\ 0 + 6 - 5 \end{pmatrix} = k \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$$

$$\begin{pmatrix} -2 \\ -3 \\ 1 \end{pmatrix} = k \begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$$

Hence k = -1 and therefore -1 is an eigenvalue of **A**, corresponding to $\begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$

$$\begin{pmatrix} 2 & -2 & 0 \\ -2 & 1 & 2 \\ 0 & 2 & 5 \end{pmatrix} \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix} = k \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} 4+2+0 \\ -4-1+2 \\ 0-2+5 \end{pmatrix} = k \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} 6 \\ -3 \\ 3 \end{pmatrix} = k \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

Hence k = 3 and therefore 3 is an eigenvalue of **A**, corresponding to $\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$

Solution Bank

9 **b**
$$A = \begin{pmatrix} 2 & -2 & 0 \\ -2 & 1 & 2 \\ 0 & 2 & 5 \end{pmatrix}$$
 and 6 is the third eigenvalue.

To find an eigenvector of A corresponding to eigenvalue 6:

To find an eigenvector of
$$A$$

$$\begin{pmatrix}
2 & -2 & 0 \\
-2 & 1 & 2 \\
0 & 2 & 5
\end{pmatrix}
\begin{pmatrix}
x \\
y \\
z
\end{pmatrix} = 6 \begin{pmatrix}
x \\
y \\
z
\end{pmatrix}$$

$$\begin{pmatrix}
2x - 2y \\
-2x + y + 2z \\
2y + 5z
\end{pmatrix} = \begin{pmatrix}
6x \\
6y \\
6z
\end{pmatrix}$$

$$\begin{pmatrix} 2x - 2y \\ -2x + y + 2z \\ 2y + 5z \end{pmatrix} = \begin{pmatrix} 6x \\ 6y \\ 6z \end{pmatrix}$$

Equating the upper elements gives:

$$2x - 2y = 6x \Rightarrow 2x = -y$$

Setting
$$x = 1$$
 gives $y = -2$

Equating the lower elements and substituting y = -2 gives: gives:

$$-4+5z=6z \Rightarrow z=-4$$

Hence an eigenvector of **A** corresponding to eigenvalue 6 is $\begin{bmatrix} -2 \\ -4 \end{bmatrix}$

Solution Bank

9 c The eigenvectors of A are $\begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -2 \\ -4 \end{pmatrix}$

$$\begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix} \text{ has magnitude } \sqrt{2^2 + 3^2 + (-1)^2} = \sqrt{14}$$

Therefore, a normalised eigenvector corresponding to $\begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$ is $\begin{pmatrix} \frac{2}{\sqrt{14}} \\ \frac{3}{\sqrt{14}} \\ -\frac{1}{\sqrt{14}} \end{pmatrix}$

$$\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$
 has magnitude $\sqrt{2^2 + (-1)^2 + 1^2} = \sqrt{6}$

Therefore, a normalised eigenvector corresponding to $\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$ is $\begin{pmatrix} \frac{2}{\sqrt{6}} \\ -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{6}} \end{pmatrix}$

$$\begin{pmatrix} 1 \\ -2 \\ -4 \end{pmatrix} \text{ has magnitude } \sqrt{1^2 + (-2)^2 + (-4)^2} = \sqrt{21}$$

Therefore, a normalised eigenvector corresponding to $\begin{pmatrix} 1 \\ -2 \\ -4 \end{pmatrix}$ is $\begin{pmatrix} \frac{1}{\sqrt{21}} \\ -\frac{2}{\sqrt{21}} \\ -\frac{4}{\sqrt{21}} \end{pmatrix}$

$$\mathbf{P} = \begin{pmatrix} \frac{2}{\sqrt{14}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{21}} \\ \frac{3}{\sqrt{14}} & -\frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{21}} \\ -\frac{1}{\sqrt{14}} & \frac{1}{\sqrt{6}} & -\frac{4}{\sqrt{21}} \end{pmatrix}$$

Note that **P** could also be formed with any reordering of the columns, and with any column(s) multiplied by -1

Solution Bank

10 a
$$\mathbf{A} = \begin{pmatrix} 1 & x & -1 \\ 3 & 0 & 2 \\ 1 & 1 & 0 \end{pmatrix}$$

Step 1

$$\det(\mathbf{A}) = 1 \begin{vmatrix} 0 & 2 \\ 1 & 0 \end{vmatrix} - x \begin{vmatrix} 3 & 2 \\ 1 & 0 \end{vmatrix} - 1 \begin{vmatrix} 3 & 0 \\ 1 & 1 \end{vmatrix}$$
$$= 1(0-2) - x(0-2) - 1(3-0)$$
$$= -2 + 2x - 3$$
$$= 2x - 5$$

Step 2

$$\mathbf{M} = \begin{pmatrix} \begin{vmatrix} 0 & 2 \\ 1 & 0 \end{vmatrix} & \begin{vmatrix} 3 & 2 \\ 1 & 0 \end{vmatrix} & \begin{vmatrix} 3 & 0 \\ 1 & 0 \end{vmatrix} & \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} \\ \begin{vmatrix} x & -1 \\ 1 & 0 \end{vmatrix} & \begin{vmatrix} 1 & -1 \\ 1 & 0 \end{vmatrix} & \begin{vmatrix} 1 & x \\ 1 & 1 \end{vmatrix} \\ \begin{vmatrix} x & -1 \\ 0 & 2 \end{vmatrix} & \begin{vmatrix} 1 & -1 \\ 3 & 2 \end{vmatrix} & \begin{vmatrix} 1 & x \\ 3 & 0 \end{vmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} 0 - 2 & 0 - 2 & 3 - 0 \\ 0 + 1 & 0 + 1 & 1 - x \\ 2x - 0 & 2 + 3 & 0 - 3x \end{pmatrix}$$

$$= \begin{pmatrix} -2 & -2 & 3 \\ 1 & 1 & 1 - x \\ 2x & 5 & -3x \end{pmatrix}$$

Step 3

$$\mathbf{C} = \begin{pmatrix} -2 & 2 & 3 \\ -1 & 1 & x - 1 \\ 2x & -5 & -3x \end{pmatrix}$$

Step 4

$$\mathbf{C}^{\mathrm{T}} = \begin{pmatrix} -2 & -1 & 2x \\ 2 & 1 & -5 \\ 3 & x - 1 & -3x \end{pmatrix}$$

Step 5

$$\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \mathbf{C}^{\mathrm{T}}$$

$$= \frac{1}{2x - 5} \begin{pmatrix} -2 & -1 & 2x \\ 2 & 1 & -5 \\ 3 & x - 1 & -3x \end{pmatrix}$$

Solution Bank

10 b
$$\mathbf{A} = \begin{pmatrix} 1 & x & -1 \\ 3 & 0 & 2 \\ 1 & 1 & 0 \end{pmatrix}$$
 and $\mathbf{A}^{-1} = \frac{1}{2x - 5} \begin{pmatrix} -2 & -1 & 2x \\ 2 & 1 & -5 \\ 3 & x - 1 & -3x \end{pmatrix}$

Therefore:

$$\mathbf{A} = \begin{pmatrix} 1 & 3 & -1 \\ 3 & 0 & 2 \\ 1 & 1 & 0 \end{pmatrix} \text{ and } \mathbf{A}^{-1} = \begin{pmatrix} -2 & -1 & 6 \\ 2 & 1 & -5 \\ 3 & 2 & -9 \end{pmatrix}$$

$$\mathbf{A} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 4 \\ 3 \\ 5 \end{pmatrix}$$

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \mathbf{A}^{-1} \begin{pmatrix} 4 \\ 3 \\ 5 \end{pmatrix}$$

$$= \begin{pmatrix} -2 & -1 & 6 \\ 2 & 1 & -5 \\ 3 & 2 & -9 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \\ 5 \end{pmatrix}$$

$$= \begin{pmatrix} -8 - 3 + 30 \\ 8 + 3 - 25 \\ 12 + 6 - 45 \end{pmatrix}$$

$$= \begin{pmatrix} 19 \\ -14 \\ -27 \end{pmatrix}$$

So
$$a = 19, b = -14, c = -27$$

11 a
$$\mathbf{A} = \begin{pmatrix} \alpha & 0 & 2 \\ 4 & 3 & 0 \\ -2 & -1 & 1 \end{pmatrix}$$

If $\det(\mathbf{A} - \mathbf{I}) = 0$ then 1 must be an eigenvalue of **A**. So calculate $\det(\mathbf{A} - \mathbf{I})$:

$$\mathbf{A} - \mathbf{I} = \begin{pmatrix} \alpha - 1 & 0 & 2 \\ 4 & 2 & 0 \\ -2 & -1 & 0 \end{pmatrix}$$
$$\det(\mathbf{A} - \mathbf{I}) = (\alpha - 1)(0 - 0) - 0(0 - 0) + 2(-4 + 4)$$
$$= 0 + 0 + 0$$
$$= 0$$

Therefore, for all values of α an eigenvalue is 1

Solution Bank

11 b
$$\begin{pmatrix} \alpha & 0 & 2 \\ 4 & 3 & 0 \\ -2 & -1 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = \beta \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} 2\alpha + 0 + 2 \\ 8 - 6 + 0 \\ -4 + 2 + 1 \end{pmatrix} = \beta \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} 2\alpha + 2 \\ 2 \\ -1 \end{pmatrix} = \beta \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$$

Equating the lower elements gives:

$$\beta = -1$$

Equating the upper elements gives:

$$2\alpha + 2 = -2 \Rightarrow \alpha = -2$$

c When
$$\alpha = -2$$

$$\mathbf{A} = \begin{pmatrix} -2 & 0 & 2 \\ 4 & 3 & 0 \\ -2 & -1 & 1 \end{pmatrix}$$

$$\det(\mathbf{A} - \lambda \mathbf{I}) = (-2 - \lambda)(3 - \lambda)(1 - \lambda) + 0 + 2(-4 + 2(3 - \lambda))$$

$$= -(2 + \lambda)(3 - \lambda)(1 - \lambda) - 8 + 12 + 4\lambda$$

$$= -(2 + \lambda)(3 - \lambda)(1 - \lambda) + 4(1 - \lambda)$$

$$= (1 - \lambda)[4 - (2 + \lambda)(3 - \lambda)]$$

$$= (1 - \lambda)[\lambda^2 - \lambda - 2]$$

$$= (1 - \lambda)[\lambda^2 - \lambda - 2]$$

$$= (1 - \lambda)(\lambda - 2)(\lambda + 1)$$

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

$$(1 - \lambda)(\lambda - 2)(\lambda + 1) = 0$$

$$\lambda = -1 \text{ or } \lambda = 1 \text{ or } \lambda = 2$$
Hence when $\alpha = -2$, the third eigenvalue of \mathbf{A} is 2

Solution Bank

12 a
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 3 \\ 2 & 1 & u \\ 0 & 1 & 1 \end{pmatrix}$$

$$\det(\mathbf{A}) = 1 \begin{vmatrix} 1 & u \\ 1 & 1 \end{vmatrix} + 1 \begin{vmatrix} 2 & u \\ 0 & 1 \end{vmatrix} + 3 \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix}$$
$$= 1(1-u) + 1(2-0) + 3(2-0)$$
$$= 1-u+2+6$$
$$= 9-u$$

$$\mathbf{M} = \begin{pmatrix} \begin{vmatrix} 1 & u \\ 1 & 1 \end{vmatrix} & \begin{vmatrix} 2 & u \\ 0 & 1 \end{vmatrix} & \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} \\ \begin{vmatrix} -1 & 3 \\ 1 & 1 \end{vmatrix} & \begin{vmatrix} 1 & 3 \\ 0 & 1 \end{vmatrix} & \begin{vmatrix} 1 & -1 \\ 0 & 1 \end{vmatrix} \\ \begin{vmatrix} -1 & 3 \\ 1 & u \end{vmatrix} & \begin{vmatrix} 1 & 3 \\ 2 & u \end{vmatrix} & \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} \end{pmatrix}$$

$$\begin{pmatrix} 1-u & 2-0 & 2-0 \end{pmatrix}$$

$$= \begin{pmatrix} 1-u & 2-0 & 2-0 \\ -1-3 & 1-0 & 1-0 \\ -u-3 & u-6 & 1+2 \end{pmatrix}$$

$$= \begin{pmatrix} 1-u & 2 & 2 \\ -4 & 1 & 1 \\ -u-3 & u-6 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} 1-u & 2 & 2 \\ -4 & 1 & 1 \\ -u-3 & u-6 & 3 \end{pmatrix}$$

$$\mathbf{C} = \begin{pmatrix} 1 - u & -2 & 2 \\ 4 & 1 & -1 \\ -u - 3 & 6 - u & 3 \end{pmatrix}$$

$$\mathbf{C}^{\mathrm{T}} = \begin{pmatrix} 1 - u & 4 & -u - 3 \\ -2 & 1 & 6 - u \\ 2 & -1 & 3 \end{pmatrix}$$

$$\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \mathbf{C}^{\mathrm{T}}$$

$$= \frac{1}{9-u} \begin{pmatrix} 1-u & 4 & -u-3 \\ -2 & 1 & 6-u \\ 2 & -1 & 3 \end{pmatrix} \quad u \neq 9$$

Solution Bank

12 b
$$\mathbf{A} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -2.8 \\ 5.3 \\ 2.3 \end{pmatrix}$$

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \mathbf{A}^{-1} \begin{pmatrix} -2.8 \\ 5.3 \\ 2.3 \end{pmatrix}$$
When $u = 4$,
$$\mathbf{A}^{-1} = \frac{1}{5} \begin{pmatrix} -3 & 4 & -7 \\ -2 & 1 & 2 \\ 2 & -1 & 3 \end{pmatrix}$$

$$= \begin{pmatrix} -0.6 & 0.8 & -1.4 \\ -0.4 & 0.2 & 0.4 \\ 0.4 & -0.2 & 0.6 \end{pmatrix}$$

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -0.6 & 0.8 & -1.4 \\ -0.4 & 0.2 & 0.4 \\ 0.4 & -0.2 & 0.6 \end{pmatrix} \begin{pmatrix} -2.8 \\ 5.3 \\ 2.3 \end{pmatrix}$$

$$= \begin{pmatrix} 1.68 + 4.24 - 3.22 \\ 1.12 + 1.06 + 0.92 \\ -1.12 - 1.06 + 1.38 \end{pmatrix}$$

$$= \begin{pmatrix} 2.7 \\ 3.1 \\ -0.8 \end{pmatrix}$$

$$a = 2.7, b = 3.1 \text{ and } c = -0.8$$

13 a
$$\mathbf{M} = \begin{pmatrix} 3 & 0 & 0 \\ 1 & 1 & 1 \\ 4 & -1 & 3 \end{pmatrix}$$

13 a
$$\mathbf{M} = \begin{pmatrix} 3 & 0 & 0 \\ 1 & 1 & 1 \\ 4 & -1 & 3 \end{pmatrix}$$

$$\mathbf{M} - \lambda \mathbf{I} = \begin{pmatrix} 3 - \lambda & 0 & 0 \\ 1 & 1 - \lambda & 1 \\ 4 & -1 & 3 - \lambda \end{pmatrix}$$

$$\det(\mathbf{M} - \lambda \mathbf{I}) = (3 - \lambda) [(1 - \lambda)(3 - \lambda) + 1] + 0 [1(3 - \lambda) - 4] + 0 [-1 - 4(1 - \lambda)]$$

$$= (3 - \lambda) [(1 - \lambda)(3 - \lambda) + 1]$$

$$= (3 - \lambda)(3 - 4\lambda + \lambda^2 + 1)$$

$$= (3 - \lambda)(\lambda^2 - 4\lambda + 4)$$

$$= (3 - \lambda)(\lambda - 2)(\lambda - 2)$$

$$\det\left(\mathbf{M} - \lambda \mathbf{I}\right) = 0$$

$$(3-\lambda)(\lambda-2)(\lambda-2)=0$$

$$\lambda = 3$$
 or $\lambda = 2$ repeated

Hence **M** has only two distinct eigenvalues.

Solution Bank

13 b To find an eigenvector corresponding to eigenvalue 3:

$$\begin{pmatrix} 3 & 0 & 0 \\ 1 & 1 & 1 \\ 4 & -1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 3 \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
$$\begin{pmatrix} 3x \\ x+y+z \\ = \begin{pmatrix} 3x \\ 3y \\ \end{pmatrix}$$

Equating the lower elements gives:

$$4x - y + 3z = 3z \Rightarrow y = 4x$$

Setting
$$x = 1$$
 gives $y = 4$

Equating the middle elements and substituting x = 1 and y = 4 gives:

$$1+4+z=12 \Rightarrow z=7$$

Hence, an eigenvector corresponding to eigenvalue 3 is $\begin{pmatrix} 1 \\ 4 \\ 7 \end{pmatrix}$

To find an eigenvector corresponding to eigenvalue 2:

$$\begin{pmatrix} 3 & 0 & 0 \\ 1 & 1 & 1 \\ 4 & -1 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = 2 \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$\begin{pmatrix} 3x \\ x+y+z \\ 4-y+3z \end{pmatrix} = \begin{pmatrix} 2x \\ 2y \\ 2z \end{pmatrix}$$

Equating the top elements gives:

$$3x = 2x \Rightarrow x = 0$$

Equating the middle elements and substituting x = 0 gives:

$$0+y+z=2y \Rightarrow y=z$$

Setting
$$y = 1$$
 gives $z = 1$

Hence, an eigenvector corresponding to eigenvalue 2 is $\begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$

Solution Bank

$$\mathbf{P}^{\mathbf{T}} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{pmatrix}$$

$$\mathbf{P}^{\mathbf{T}} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{pmatrix}$$

$$\mathbf{P}^{\mathbf{P}^{\mathbf{T}}} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{2} & 0 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{4} + \frac{1}{4} + \frac{1}{2} & \frac{1}{4} + \frac{1}{4} - \frac{1}{2} & \frac{1}{2\sqrt{2}} - \frac{1}{2\sqrt{2}} + 0 \\ \frac{1}{2\sqrt{2}} - \frac{1}{2\sqrt{2}} + 0 & \frac{1}{2\sqrt{2}} - \frac{1}{2\sqrt{2}} + 0 & \frac{1}{2} + \frac{1}{2} + 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Therefore, **P** is orthogonal.

Solution Bank

14 b
$$\Pi_2 : x + y - \sqrt{2}z = 0$$

Find two non-parallel position vectors \mathbf{v} and \mathbf{w} inside Π_2 :

Set
$$x = 0$$
 and $z = 1$: then $y = \sqrt{2}$

So
$$\mathbf{v} = \begin{pmatrix} 0 \\ \sqrt{2} \\ 1 \end{pmatrix}$$
 and $\mathbf{w} = \begin{pmatrix} \sqrt{2} \\ 0 \\ 1 \end{pmatrix}$ are position vectors inside Π_2

To find Π_1 , determine **a** and **b** such that $\mathbf{Pa} = \mathbf{v}$ and $\mathbf{Pb} = \mathbf{w}$ as these will be non-parallel position vectors inside Π_1

So
$$\mathbf{a} = \mathbf{P}^{-1}\mathbf{v}$$
 and $\mathbf{b} = \mathbf{P}^{-1}\mathbf{w}$

As **P** is orthogonal, $\mathbf{P}^{-1} = \mathbf{P}^{T}$ so $\mathbf{a} = \mathbf{P}^{T}\mathbf{v}$ and $\mathbf{b} = \mathbf{P}^{T}\mathbf{w}$

$$\mathbf{a} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{pmatrix} \begin{pmatrix} 0 \\ \sqrt{2} \\ 1 \end{pmatrix} = \begin{pmatrix} \sqrt{2} \\ 0 \\ -1 \end{pmatrix}$$

$$\mathbf{b} = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{pmatrix} \begin{pmatrix} \sqrt{2} \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \sqrt{2} \\ 0 \\ 1 \end{pmatrix}$$

 $\mathbf{a} \times \mathbf{b}$ is in the normal direction of the plane Π_1

$$\mathbf{a} \times \mathbf{b} = \begin{pmatrix} \sqrt{2} \\ 0 \\ -1 \end{pmatrix} \times \begin{pmatrix} \sqrt{2} \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 0+0 \\ \sqrt{2}+\sqrt{2} \\ 0+0 \end{pmatrix} = \begin{pmatrix} 0 \\ \sqrt{2} \\ 0 \end{pmatrix}$$

Therefore
$$\Pi_1$$
 is $2\sqrt{2}y = 0$
Or simply, $y = 0$

Solution Bank

15 a
$$\mathbf{A} = \begin{pmatrix} 3 & -3 & 6 \\ 0 & 2 & -8 \\ 0 & 0 & -2 \end{pmatrix}$$

$$\mathbf{A} - \lambda \mathbf{I} = \begin{pmatrix} 3 - \lambda & -3 & 6 \\ 0 & 2 - \lambda & -8 \\ 0 & 0 & -2 - \lambda \end{pmatrix}$$

$$\det(\mathbf{A} - \lambda \mathbf{I}) = (3 - \lambda) [(2 - \lambda)(-2 - \lambda) - 0] + 3[0(-2 - \lambda) - 0] + 6(0 - 0)$$
$$= -(2 - \lambda)(2 + \lambda)(3 - \lambda)$$

$$\det(\mathbf{A} - \lambda \mathbf{I}) = 0$$

$$-(2-\lambda)(2+\lambda)(3-\lambda)=0$$

$$\lambda = -2 \text{ or } \lambda = 2 \text{ or } \lambda = 3$$

$$\mathbf{b} \begin{pmatrix} 3 & -3 & 6 \\ 0 & 2 & -8 \\ 0 & 0 & -2 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} = k \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 9-3+0 \\ 0+2+0 \\ 0+0+0 \end{pmatrix} = k \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 6 \\ 2 \\ 0 \end{pmatrix} = k \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$$

Therefore k = 2

Hence
$$\begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$$
 is an eigenvector of A

Solution Bank

15 c
$$\mathbf{B} = \begin{pmatrix} 7 & -6 & 2 \\ 1 & 2 & 3 \\ 1 & -3 & 2 \end{pmatrix}$$

$$\begin{pmatrix} 7 & -6 & 2 \\ 1 & 2 & 3 \\ 1 & -3 & 2 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix} = k \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 21 - 6 + 0 \\ 3 + 2 + 0 \\ 3 - 3 + 0 \end{pmatrix} = k \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 15 \\ 5 \\ 0 \end{pmatrix} = k \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$$

Therefore k = 5

Hence
$$\begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$$
 is an eigenvector of **B**

d So $\begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$ is an eigenvector of **AB** corresponding to the eigenvalue 10

Solution Bank

16 a
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 1 \\ 3 & 1 & 1 \\ 4 & 2 & 7 \end{pmatrix}$$

$$\det(\mathbf{A}) = 1 \begin{vmatrix} 1 & 1 \\ 2 & 7 \end{vmatrix} - 0 \begin{vmatrix} 3 & 1 \\ 4 & 7 \end{vmatrix} + 1 \begin{vmatrix} 3 & 1 \\ 4 & 2 \end{vmatrix}$$
$$= 1(7-2) - 0 + 1(6-4)$$
$$= 5 + 2$$
$$= 7$$

$$\mathbf{M} = \begin{pmatrix} \begin{vmatrix} 1 & 1 \\ 2 & 7 \end{vmatrix} & \begin{vmatrix} 3 & 1 \\ 4 & 7 \end{vmatrix} & \begin{vmatrix} 3 & 1 \\ 4 & 2 \end{vmatrix} \\ \begin{vmatrix} 0 & 1 \\ 2 & 7 \end{vmatrix} & \begin{vmatrix} 1 & 1 \\ 4 & 7 \end{vmatrix} & \begin{vmatrix} 1 & 0 \\ 4 & 2 \end{vmatrix} \\ \begin{vmatrix} 0 & 1 \\ 1 & 1 \end{vmatrix} & \begin{vmatrix} 1 & 1 \\ 3 & 1 \end{vmatrix} & \begin{vmatrix} 1 & 0 \\ 3 & 1 \end{vmatrix} \end{pmatrix}$$
$$= \begin{pmatrix} 7-2 & 21-4 & 6-4 \\ 0-2 & 7-4 & 2-0 \\ 0-1 & 1-3 & 1-0 \end{pmatrix}$$
$$\begin{pmatrix} 5 & 17 & 2 \end{pmatrix}$$

$$\mathbf{C} = \begin{pmatrix} 5 & -17 & 2 \\ 2 & 3 & -2 \\ -1 & 2 & 1 \end{pmatrix}$$

$$\mathbf{C}^{\mathrm{T}} = \begin{pmatrix} 5 & 2 & -1 \\ -17 & 3 & 2 \\ 2 & -2 & 1 \end{pmatrix}$$

Step 5

$$\mathbf{A}^{-1} = \frac{1}{\det(\mathbf{A})} \mathbf{C}^{\mathrm{T}}$$
$$= \frac{1}{7} \begin{pmatrix} 5 & 2 & -1 \\ -17 & 3 & 2 \\ 2 & -2 & 1 \end{pmatrix}$$

Solution Bank

16 b
$$x = \frac{y}{4} = \frac{z}{3}$$

written in vector form this is the line:

$$\mathbf{r} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix}$$

Let the line mapped onto $\mathbf{r} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix}$ be $\mathbf{r} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} a \\ b \\ c \end{pmatrix}$

$$\mathbf{A} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \mathbf{A}^{-1} \begin{pmatrix} 1 \\ 4 \\ 3 \end{pmatrix}$$

$$= \frac{1}{7} \begin{pmatrix} 5+8-3 \\ -17+12+6 \\ 2-8+3 \end{pmatrix}$$

$$= \frac{1}{7} \begin{pmatrix} 10 \\ 1 \\ -3 \end{pmatrix}$$

So the mapped line is:

$$\mathbf{r} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} \frac{10}{7} \\ \frac{1}{7} \\ -\frac{3}{7} \end{pmatrix}$$

In Cartesian form this is the line:

$$\frac{x}{\frac{10}{7}} = \frac{y}{\frac{1}{7}} = \frac{z}{-\frac{3}{7}}$$
$$\frac{x}{10} = \frac{y}{1} = \frac{z}{-3}$$

Solution Bank

Challenge

$$\mathbf{a} \quad \mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \text{ and } \mathbf{B} = \begin{pmatrix} e & f \\ g & h \end{pmatrix}$$

$$\mathbf{A}\mathbf{B} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix}$$

$$= \begin{pmatrix} ae+bg & af+bh \\ ce+dg & cf+dh \end{pmatrix}$$

$$\operatorname{tr}(\mathbf{A}\mathbf{B}) = ae+bg+cf+dh$$

$$\mathbf{B}\mathbf{A} = \begin{pmatrix} e & f \\ g & h \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$= \begin{pmatrix} ae+cf & be+df \\ ag+ch & bg+dh \end{pmatrix}$$

$$\operatorname{tr}(\mathbf{B}\mathbf{A}) = ae+bg+cf+dh$$

So tr(AB) = tr(BA) as required

b
$$\operatorname{tr}(\mathbf{P}^{-1}\mathbf{MP}) = \operatorname{tr}(\mathbf{P}^{-1}(\mathbf{MP}))$$

 $= \operatorname{tr}((\mathbf{MP})\mathbf{P}^{-1})$
 $= \operatorname{tr}(\mathbf{M})$
Since $\operatorname{tr}(\mathbf{P}^{-1}\mathbf{MP}) = p + q$ then $\operatorname{tr}(\mathbf{M}) = p + q$ as required.